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Quantitative Systems Pharmacology 
Models: Potential Tools for Advancing Drug 
Development for Rare Diseases
Susana Neves-Zaph* and Chanchala Kaddi

Rare diseases, affecting millions globally, present significant drug development challenges. This is due to the 
limited patient populations and the unique pathophysiology of these diseases, which can make traditional clinical 
trial designs unfeasible. Quantitative Systems Pharmacology (QSP) models offer a promising approach to expedite 
drug development, particularly in rare diseases. QSP models provide a mechanistic representation of the disease 
and drug response in virtual patients that can complement routinely applied empirical modeling and simulation 
approaches. QSP models can generate digital twins of actual patients and mechanistically simulate the disease 
progression of rare diseases, accounting for phenotypic heterogeneity. QSP models can also support drug 
development in various drug modalities, such as gene therapy. Impactful QSP models case studies are presented 
here to illustrate their value in supporting various aspects of drug development in rare indications. As these QSP 
model applications continue to mature, there is a growing possibility that they could be more widely integrated 
into routine drug development steps. This integration could provide a robust framework for addressing some of the 
inherent challenges in rare disease drug development.

ADDRESSING THE UNMET MEDICAL NEED FOR RARE 
DISEASES
Rare diseases are defined as conditions that affect fewer than 
200,000 patients in the United States, while in the European 
Union, a disease is considered rare if it occurs in less than 1 in 2,000 
individuals.1,2 These diseases typically manifest as chronic and 
sometimes life-threatening conditions, predominantly diagnosed 
during childhood. There are approximately 7,000 rare diseases col-
lectively, with a global prevalence estimated to exceed 300 million 
people. In the United States, rare diseases are estimated to affect 
approximately 15.5 million individuals, with healthcare expenses 
amounting to USD$ 997 billion per year.3 Despite this, over 90% 
of these conditions lack approved treatments, highlighting the 
significant unmet need.4 This scarcity of therapeutic options is 
particularly alarming, considering that these treatments could po-
tentially be lifesaving for those affected by these diseases.

The development of treatments for rare indications often pres-
ent unique challenges, resulting in difficulty in executing random-
ized, double-blind, placebo-controlled studies, the gold standard 
in drug development. Rare indications are characterized by limited 
patient numbers that are often geographically dispersed, compli-
cating the recruitment and logistics of traditionally designed clin-
ical trials.5,6 This results in low patient recruitment numbers with 
lengthy recruitment periods, which can lead to underpowered clin-
ical studies.7 Rare indications also present with high phenotypic 
heterogeneity and variable disease progression that can lead to 

significant variations in drug response from patient to patient, and 
this compounded with low patient numbers can often make the 
outcomes of clinical trials difficult to interpret.8–12 All these fac-
tors can make it challenging to meet the regulatory requirements 
for drug approval.

Regulatory agencies have taken proactive steps in an effort to 
streamline the process of drug development, particularly for rare 
indications. They have established a set of recommendations and 
conducted workshops to clarify their stance and aid sponsors. 
One of the key recommendations put forth by these agencies is 
the adoption of Model-Informed Drug Development (MIDD). 
This approach has been endorsed by several regulatory bodies, 
including the European Medicines Agency (EMA) in 2006 and 
the Food and Drug Administration (FDA) in 2014, 2017, and 
2019a, as well as the FDA and M-CERSI in 2023. MIDD is a 
strategic tool that can significantly enhance the various stages of 
drug development by facilitating data-driven decision-making, 
optimizing the design of clinical trials, and de-risking uncer-
tainties.13–15 Moreover, MIDD approaches have the potential 
to make a substantial contribution to the body of evidence pre-
sented to regulatory agencies by providing comprehensive data 
and insights that strengthen the case for drug approvals.16,17 The 
application of MIDD in rare drug development has the poten-
tial to optimize the drug development process, thereby benefit-
ing both the sponsors and the patients who await these critical 
treatments.
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QSP IN DRUG DEVELOPMENT
Pharmacometric approaches are established tools widely ap-
plied in various stages of drug development. These approaches 
provide predictive analysis of pharmacokinetics and pharma-
codynamics and are used to understand the dose–response 
relationship in preclinical studies to derive a safe dose for first-
in-human studies. These approaches also contribute to the 
analysis of phase I/II data to optimize the dose for safety and 
efficacy in phase III trials.

Quantitative Systems Pharmacology (QSP) models are emerg-
ing as promising tools to support many aspects of drug develop-
ment, particularly in the context of rare diseases.18 QSP models 
incorporate mathematical representations of key pathophysiolog-
ical processes in a disease of interest, spanning multiple scales of 
biology from signaling pathway dysregulation to organ-level dys-
function.19–21 They link the mechanism of action (MoA) of a drug 
to the appropriate biological reactions at the sub-cellular scale, in-
tegrating the properties of a drug candidate with current available 
data on the disease etiology, target expression, and relevant physi-
ological processes and variability.22 By doing so, these models can 
describe the dynamic relationship between a drug and its target to 
gain insight into the therapeutic response at the sub-cellular, cellu-
lar, and in some cases organ level (Figure 1).

QSP, while relatively new, complements other established 
modeling and simulation approaches widely used to analyze data 
from preclinical and clinical studies of a drug candidate.20,21 
Unlike pharmacometric approaches, which mathematically 
describe drug exposure and the trajectories of biomarkers and 
clinical end points from a defined dataset without considering 
a biological mechanism, QSP models offer an interpretable 
framework for understanding and predicting disease progres-
sion and therapeutic response. These models integrate diverse 
data sources, extending beyond the traditional datasets collected 

during clinical drug development, incorporating prior knowl-
edge already available in the public domain to add context to the 
clinical data derived from the drug candidate. Prior knowledge 
includes information on physiology, biochemistry, and phar-
macology and can be combined with relevant preclinical and 
clinical datasets to inform key features of the disease and drug 
response to be represented in the model. Natural history data-
sets and clinical datasets from other drugs with the same indica-
tion can also be incorporated into the modeling effort, allowing 
quantitative comparisons of efficacy. By accounting for all these 
data sets and the current understanding of the pathophysiology 
and the pharmacology of the drug, an integrative view of the dis-
ease and possible response in virtual patients is formed. In addi-
tion, evaluating all these data sources during model development 
and attempting to combine them into a cohesive mathematical 
representation of the observed pathophysiology and response 
can be tremendously helpful and can result in the identification 
of knowledge gaps that need further experimentation.

QSP MODELS APPLIED IN DRUG DEVELOPMENT IN RARE 
DISEASES
The value of the QSP approach lies in its ability to connect 
drug-target engagement to biomarkers and clinical end points 
in a mechanistic manner, providing a representation of the 
disease and drug response in virtual patients. The bottom-up 
nature of QSP models allows the simulation of untreated and 
treated virtual patients to support various aspects of drug de-
velopment starting in discovery and extending through late 
development.19 These model applications include drug target 
and drug candidate prioritization, translating preclinical effi-
cacy to predict first-in-human dose in the target patient popu-
lation, biomarker justification, dose optimization, exploration 
of different dosing regimens, and efficacy predictions in patient 

Figure 1  Overview of QSP approach. QSP models describe pathophysiology and pharmacology at different biological scales informed by data 
from various sources to describe biomarkers and clinical end points in virtual patients.
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subpopulations considering age, disease burden, and other fac-
tors that may affect the exposure–response relationship. The 
following QSP model case studies illustrate some of these appli-
cations and how they impact many stages of drug development 
in rare indications.

Application: translating preclinical data to predict first-in-
human dose
QSP models can support first-in-human dosing for rare indi-
cations by incorporating mechanistic knowledge on the patho-
physiology targeted and integrating it with the preclinical 
evidence accumulated from early discovery. The translation of 
preclinical efficacy by QSP models can extend beyond the in-
formation obtained from the customary animal disease mod-
els that may not adequately recapitulate the key features of the 
disease of interest. QSP models can complement conventional 
approaches that rely on allometric scaling and safety thresholds 
obtained from preclinical studies to predict therapeutic doses 
in the intended patient population. The QSP approach can also 
be applied to justify the efficacious dose in phase II trials, par-
ticularly when the phase I trial was performed in healthy vol-
unteers. The following case studies illustrate examples of QSP 
approaches applied to support target justification and dosing 
predictions in rare indications.

Case Study 1: Preclinical translation of brain exposure:response. 
The QSP analysis by Jafarnejad et al. demonstrates the usefulness 
of applying QSP-based preclinical translation to inform the 
first-in-human dosing in a rare indication patient population.23 
The QSP model focused on Mucopolysaccharidosis type II 
(MPS II; ORPHA:580), a disease caused by mutations in the 
iduronate-2-sulfatase (IDS) gene. IDS is an enzyme responsible 
for the lysosomal degradation of glycosaminoglycans (GAGs). 
IDS deficiency leads to the accumulation of GAGs and 
results in complex clinical phenotypes involving multi-organ 
dysfunction, including hepatosplenomegaly, hearing loss, 
and cardiac valve disease.24 In the severe clinical phenotypes, 
affecting about two-thirds of the patients, the brain is also 
impacted, resulting in cognitive deficits. Standard of care 
is enzyme replacement therapy (ERT) consisting of weekly 
intravenous (IV) infusions of recombinant IDS. However, IV 
IDS ERT is unable to reduce GAGs accumulation in the brain 
due to its limited ability to cross the blood–brain barrier. A 
novel IV-administered fusion protein (ETV-IDS) utilizes 
transferrin receptor (TfR)-mediated transcytosis to improve 
brain uptake.25 A QSP model of the GAG dynamics in the brain 
and CSF was developed. In this analysis, simulated ETV-IDS 
treatment was evaluated against those from other ERT types 
with various modes of administration, with the goal of ranking 
these drugs based on improved brain exposure. The model was 
informed by preclinical brain and CSF pharmacokinetics and 
pharmacodynamics for each ERT type, and then applied to 
assess the relationship between biodistribution and efficacious 
GAG reductions in brain and CSF for ERT types with varying 
brain penetration capabilities.23 Based on the factors affecting 
the exposure:response relationship, the efficacious dose for 

ETV-IDS was predicted for MPS II patients. A phase II/III 
clinical trial is currently ongoing (NCT05371613).

Case Study 2: Understanding drug–multitarget interaction to 
propose efficacious dose. The next case study applies a QSP 
model to predict the efficacious dose for a recombinant protein 
for the treatment of Duchenne Muscular Dystrophy (DMD; 
ORPHA:98896).26 DMD is a rare neuromuscular disease caused 
by the absence of dystrophin, which leads to progressive muscle 
degeneration and weakness, causing loss of ambulation and 
eventual death due to respiratory and cardiac failure. Minimizing 
muscle wasting and enhancing muscle mass/strength are 
promising DMD treatment strategies currently being pursued. 
Follistatin, an endogenous circulating glycoprotein, is a candidate 
therapeutic for DMD as it promotes generation of muscle tissues 
by preventing known mediators of muscle wasting, myostatin 
and activin, from binding to their receptor activin type IIB 
(ActRIIB). FS-EEE-Fc, an investigational DMD drug, is an 
engineered recombinant protein form of follistatin. The DMD 
QSP model described both myostatin and activin dynamics, and 
their interaction with ActRIIB. The model also described how 
myostatin and activin binding to ActRIIB leads to inhibition of 
muscle growth in DMD. Simulations of FS-EEE-Fc treatment 
showed efficacy against muscle wasting, and this response was 
further characterized by simulating the muscle wasting effect 
when FS-EEE-Fc solely targeted myostatin or activin. The model 
indicates that inhibiting both myostatin and activin pathways 
simultaneously enhances muscle growth more effectively than 
targeting myostatin alone, thereby supporting the rationale for 
the dual-targeting design of FS-EEE-Fc. The model was applied 
as a translational tool to understand the degree of dual pathway 
inhibition of activin and myostatin needed to have meaningful 
muscle growth. Based on analysis of recent DMD clinical trials, 
an efficacy threshold of 7% muscle mass growth was deemed 
clinically meaningful in functional muscle metrics. Using this 
threshold, a potential efficacious dose was proposed that would 
result in >7% muscle mass.

Application: gaining insight into complex biology
The coagulation cascade has been a popular topic in several sys-
tems biology and QSP models (reviewed here27). The coagula-
tion cascade involves a network of binding interactions between 
coagulation factors and proteolysis events, with multiple feed-
back loops leading to thrombin generation and eventual fibrin 
changes. The highly complex and nonlinear nature of the coag-
ulation cascade benefits from mechanistic modeling, as without 
it, intuitive understanding is challenging if not impossible.28 
QSP models can account for this complexity by simulating the 
key biochemical interactions and feedback regulations, which 
have been extensively characterized, providing a mechanistic 
understanding of the factors impacting clotting events and the 
drugs that modulate them. This modeling approach benefits 
from the availability of quantitative measures related to coag-
ulation, such as physiological levels of coagulation factors in 
healthy or disease states, and in vitro assays routinely used in 
the clinic to quantify clotting function in individuals. These 
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measurements allow for parameter estimation and validation, 
enhancing the model’s quality and performance to support clin-
ical drug development. Several QSP models have been applied 
to simulate the effects of various therapies (both established 
and novel) on the coagulation cascade under different clinical 
scenarios, with the goal of gaining insight on drug responses, 
and optimizing treatment strategies.

Several rare diseases are associated with clinical bleeding, includ-
ing inherited deficiencies of coagulation factors such as hemophilia 
A and B (involving deficiencies in factors VIII and IX, respectively; 
ORPHA:448). These diseases are often treated with factor supple-
mentation, as well as other emerging non-factor modalities. Several 
QSP models of hemophilia A and B have been developed by le-
veraging existing models of the coagulation cascade in the healthy 
state and reducing factor VIII or factor IX, respectively, as exem-
plified in ref. [29–33]. The following two case studies showcase 
QSP models that have been applied to assess the impact of differ-
ent coagulation factors and interventions on thrombin generation 
dynamics and have represented drug effects in terms of clinically 
relevant metrics of coagulation.

Case Study 3: Mechanistic insight into clinical metrics of 
coagulation. Nayak et al. developed a QSP model of hemophilia 
A that contained descriptions of some of the standard in vitro 
assays used to monitor the coagulation potential of a patient, such 
as the thrombin generation assay (TGA). This model was applied 
to mechanistically understand the readouts of these assays and 
assess the clotting potential of the intrinsic and extrinsic pathway 
of the coagulation cascade.29 The model, informed by data from 
healthy or hemophilia plasma, evaluated the effects of modulating 
different coagulation factor levels (active and inactive), 
identifying which of the coagulation factors may contribute most 
to variability in response to factor supplementation treatment in 
hemophilia A. This study quantified the diverse effects of each 
factor on the outputs of these in vitro assays, accounting on their 
placement within the coagulation cascade. This type of insight 
could support a mechanistic interpretation of unexpected assay 
readouts in a clinical setting, and start to understand how the 
naturally occurring variability in coagulation factor expression 
(other than factor VIII or factor IX) may lead to variability in 
treatment effect.

Case Study 4: QSP-based assessment of hemostatic equivalency 
between a new drug and standard of care. Mechanistic modeling 
has also been applied to innovative non-factor approaches of 
treating hemophilia. A model for GalNAc-conjugated siRNA was 
developed using published data for fitusiran, an investigational 
siRNA therapeutic that targets antithrombin (AT) to rebalance 
hemostasis in hemophilia A or B. Fitusiran treatment has been 
shown to significantly reduce bleeding events compared to factor 
supplementation.34,35

To gain insight into the hemostatic equivalency of fitusiran 
prophylaxis (i.e., AT lowering) compared to conventional factor 
supplementation, a QSP model was developed to represent the 
thrombin generation in hemophilia A upon AT lowering, consid-
ering the effect of alpha-2-macroglobulin, another key thrombin 

modulator.36 The QSP model represented the in vivo dynamics 
of the coagulation factors resulting in thrombin generation and 
included descriptions of in vitro coagulation assays, such as the 
TGA. A virtual population (VP) of untreated severe hemophilia 
A patients was generated and used to simulate TGA metrics. These 
simulated TGA metrics were compared to observed clinical data 
to establish the validity of the VP and gain confidence in its appli-
cability for the hemostatic equivalency analysis. Simulated TGA 
metrics from this VP with reduced AT levels were evaluated against 
simulated TGA metrics derived from the same VP but instead 
treated with supplemental factors. This VP analysis of fitusiran 
provided predictions of hemostatic equivalency with FVIII sup-
plementation in a representative population of severe hemophilia 
A patients, allowing the in silico evaluation and comparison of two 
different treatment approaches in terms of thrombin generation 
dynamics. Given the mechanistic underpinning and the breadth of 
data incorporated for QSP model validation in both the healthy 
and disease states, such QSP approaches may also be leveraged to 
support drug development in ultra-rare bleeding disorders caused 
by deficient activity of other coagulation factors.37

Application: incorporating natural history and real-world 
data into QSP models
QSP models provide an integrated “systems level” approach to de-
scribe the interplay between disease and the MoA of a drug. These 
models are informed by data from various sources rather than a 
single clinical trial dataset, providing biological constraints to 
the physiological scales included in the model (Figure 1). These 
various datasets can include natural history studies and real-world 
data in the form of disease registries. Disease registries are obser-
vational data collections from patients diagnosed with a specific 
type of disease. For rare diseases, where clinical trials are often of 
small size and patients display high phenotypic variability, disease 
registries are valuable data sources to help understand disease pro-
gression and the degree of variability expected in the patient pop-
ulation.38 The next two case studies highlight QSP models where 
natural history or registry datasets were incorporated to inform 
long-term efficacy predictions, or therapeutic response predic-
tions in a more diverse or realistic patient population.

Case Study 5: Predicting long-term response from short-term 
observations informed by natural history data. The QSP model of 
vosoritide provides an example of leveraging natural history data 
to translate short-term observations of clinical efficacy into long-
term clinical benefit. Vosoritide is a recently approved treatment 
for Achondroplasia (Ach; ORPHA:15), an autosomal dominant 
form of skeletal dysplasia resulting in short stature, with a 
worldwide incidence of 1/25,000. Ach is caused by mutations in 
the fibroblast growth factor receptor 3 (FGFR3), leading to its 
over-activation and resulting in reduced bone growth velocity due 
to dysregulation of the development growth plate. Vosoritide’s 
MoA is the stimulation of the natriuretic peptide receptor 2 
(NPR2) to downregulate the excessive FGFR3 signaling observed 
in Ach. A QSP model was developed to represent the contribution 
of healthy and excessive FGFR3 signaling on bone growth. By 
mechanistically describing FGFR3 and NPR2 dynamics and 
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their modulation of signaling in growth plates in the bone, the 
model connected FGFR3 activation levels to growth velocity and 
terminal height in either healthy individuals or in Ach patients.39 
The model leveraged longitudinal height data from the CDC in 
healthy individuals and natural history studies in Ach patients, 
as well as data from other rare indications impacting height due 
to dysfunction in the FGFR3-NPR2 pathway. The QSP model 
reproduced longitudinal height data for both healthy and Ach 
populations from infancy through adulthood by modulating the 
FGFR3-NPR2 pathway kinetics accordingly. The model also 
reproduced the effect of vosoritide treatment on growth velocity 
and predicted the impact of long-term treatment on terminal 
height. This type of QSP modeling exercise could be applied to 
compare the long-term benefit of drug candidates being developed 
in Ach, where terminal height would not be amenable to be 
evaluated during the duration of a traditional clinical trial.

Case Study 6: Accounting for phenotypic heterogeneity by 
incorporating real-world data. Gaucher disease (ORPHA:355) is 
caused by deficient activity of the lysosomal enzyme acid beta-
glucosidase (GCase), due to mutations in the GBA gene. GCase 
is a key enzyme in the glycosphingolipid pathway as it degrades 
the glycosphingolipid glucosylceramide (GL-1) to ceramide. 
Progressive accumulation of GL-1 in many tissues leads to multi-
systemic disease manifestations including massive splenomegaly 
and bone disease. The degree of enzyme deficiency of GCase gives 
rise to a spectrum of disease phenotypes, ranging from the non-
neuronopathic type 1 (GD1) to the most severe type 2 (GD2) 
and intermediate type 3 (GD3), which are both characterized 
by neurological manifestations in addition to visceral symptoms. 
Patients with GD2 do not survive infancy.

Gaucher disease was the first lysosomal storage disease to be 
treated with ERT (imiglucerase, marketed as Cerezyme), where 
the patient’s deficient endogenous GCase activity was supple-
mented with intravenously administered recombinant enzyme. 
Subsequently, the substrate reduction therapy (SRT) approach was 
developed for treatment of GD1 (eliglustat, marketed as Cerdelga). 
While ERT supplements enzymatic degradation of GL-1, SRT acts 
through inhibition of GL-1 synthesis via an orally administered 
small molecule.

A QSP modeling analysis was performed to provide mechanistic 
insight into SRT efficacy following a switch from ERT treatment 
in GD1 patients, a population in which a range of different mu-
tations in GBA gene is associated with variable disease severity. 
For this purpose, this analysis leveraged the extensive real-world 
data collected by the International Collaborative Gaucher Group 
(ICGG) Gaucher Registry in addition to the preclinical, clinical 
data and natural history data typically incorporated into QSP 
models. The ICGG Gaucher Registry (NCT00358943), a Sanofi 
Genzyme-sponsored program first established in 1991, is the larg-
est voluntary observational database for Gaucher disease.40 The 
registry records demographics and clinical outcomes for more than 
6,000 patients from over 50 countries, regardless of treatment his-
tory or status. All participants in the eliglustat clinical trials and 
the ICGG Gaucher Registry provided written informed consent 
allowing post hoc analysis of de-identified data.

Through incorporating the extensive genotype and clinical end-
point data collected by the ICGG Gaucher Registry, this analysis 
illustrated how real-world evidence can be incorporated into QSP 
models. This enables the development of QSP virtual populations 
that are more diverse than those often enrolled in clinical trials for 
rare indications, including appropriate representations of mild, 
moderate, and severe genotypes, and hence supports prediction of 
therapeutic effects in critical sub-populations.

Application: exploring new drug modalities
Mechanistic models can support new drug modalities, such as oli-
gonucleotide therapeutics and gene therapies, where their pharma-
cology introduces PK and PD complexities due to the multi-step 
MoA of these new therapeutics. Oligonucleotide therapeutics, 
which include antisense oligonucleotides and siRNAs, show 
promising clinical outcomes for rare indications such as Duchenne 
muscular dystrophy, familial amyloid neuropathies, and macular 
degeneration.41 However, understanding the exposure:response 
relationship of these therapeutics using conventional approaches 
is challenging. For instance, it is common to observe transient 
plasma exposures for siRNA but prolonged gene silencing that 
can last for weeks or months.42 The limited clinical relevance of 
plasma PK (as a driver of PD at the tissue site of action) coupled 
with highly restricted accessibility of tissue biopsy sampling in 
humans pose additional hurdles to characterize the exposure:re-
sponse relationship.42 There have been several mechanistic models 
developed that have represented the key steps required for siRNA 
to gene silence such as cellular uptake, assembly of RNA-induced 
silencing complex (RISC), and degradation of mRNA leading to 
reduction in the expression of the target proteins.43,44

Gene therapy holds great promise for the treatment of rare dis-
eases, many of which are currently deemed challenging to treat. By 
directly correcting the patient’s genetic material, gene therapy has 
the potential to address the root cause of many of the monogenic 
rare diseases, rather than just addressing the symptoms, and can 
provide long-term benefit, and in some cases, a permanent cure. 
Gene therapies for several rare indications such as Spinal Muscular 
Atrophy, cerebral adrenoleukodystrophy, β-Thalassemia, hemo-
philia A/B, retinal dystrophy, and Duchenne Muscular Dystrophy 
have recently been FDA-approved.45

Gene therapy clinical trials have their own unique challenges.46 
Gene therapies involve the delivery of genetic material into the tis-
sue of interest, which subsequently produce therapeutic proteins 
in a multi-step process to give rise to efficacious response. Usually 
only a single dose is administered per patient due to safety con-
cerns. This leads to a complex relationship between the “dose” of 
a gene therapy, the concentration of the resulting transgene in the 
body, and its therapeutic effect. There is no conventional PK, mak-
ing pharmacometric approaches that are traditionally performed 
during clinical development not applicable. Classic concepts that 
describe PK such as absorption, distribution, metabolism, and ex-
cretion are not relevant to describe the dynamics of viral or cellular 
therapies. In addition, gene therapy trials tend to recruit a limited 
number of patients presenting with high phenotypic heterogeneity, 
which may make the application of statistical approaches to inter-
pret efficacy results challenging. Randomized placebo-controlled 
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trials for evaluating gene therapies may not be feasible, especially in 
rare diseases for which ethical considerations may be needed47 due 
to factors such as high mortality and lack of alternative treatments.

These unique features and complexities indicate that the design 
of gene therapy trials would benefit from tailored modeling and 
simulation approaches that can represent the transgene expression 
and efficacy of gene therapy in a limited number of patients to un-
derstand the exposure:response relationship.48 QSP models, given 
their mechanistic foundation, could provide such a framework to 
support gene therapy clinical development by representing the rel-
evant biological processes that must be accounted for to describe 
the biodistribution of the transgene and efficacy of gene therapy. 
These approaches could be applied to inform dose predictions and 
clinical trial design of gene therapies. The following case studies 
describe QSP models that represent the complex steps involved in 
viral or cell-based gene therapy and the resulting efficacy in rare 
indications.

Case Study 7: QSP model of viral gene therapy to understand viral 
dose:efficacy relationship. A few QSP examples are available that 
incorporate mechanistic representations of the key processes for 
viral-based gene therapies of rare indications, including the viral 
vector distribution in the target tissue, transduction efficiency 
of these cells, transgene expression, and efficacy.49,50 Rao  
et al.50 developed a detailed model that described the relationship 
between viral dose and viral vector distribution to transgene 
expression and clinical efficacy of Fidanacogene elaparvovec 
(commercialized as Beqvez®), a recently approved gene therapy 
for treating hemophilia B. This model was calibrated based on 
published data on AAV8 vectors, pre-clinical studies of liver-
targeted AAV8, and clinical data from the phase I/IIA clinical 
trial of Fidanacogene elaparvovec.51 Simulated FIX activity was 
compared to observed data from the Fidanacogene elaparvovec 
clinical trial, with the simulations showing much faster time to 
FIX activity steady state than observed. The model was then used 
to explore hypotheses that would account for these discrepancies 
on the predicted onset of steady state FIX activity.

Case Study 8: QSP model of cell-based gene therapy and resulting 
efficacy. Cell-based gene therapy is an innovative technique that 
involves extracting cells from a patient, genetically modifying 
them ex vivo to correct or enhance their function, and then 
reintroducing them into the patient’s body. These modified cells 
can target and combat specific diseases, offering a personalized 
and highly effective treatment option. Nevertheless, cell-based 
gene therapies also must contend with several complex steps 
required prior to dosing that may impact efficacy. A QSP model of 
cell-based gene therapy for sickle cell disease (SCD; ORPHA:232) 
illustrates this. SCD is caused by a mutation in the β-globin gene 
that produces abnormal structure hemoglobin (HbS), leading 
to HbS polymerization and red blood cell (RBC) sickling. This 
results in vaso-occlusive crises, anemia, and organ damage that 
can eventually lead to death. SAR445136 is a zinc finger nuclease 
ex vivo gene editing therapy that targets the erythroid specific 
enhancer region of the transcription factor BCL11A, to switch 
the expression to fetal hemoglobin (HbF). By expressing increased 

levels of HbF, SAR445136-edited cells exhibit reduced HbS 
polymerization which is expected to ameliorate RBC sickling and 
the SCD phenotype.

A QSP model was developed to account for steps in the manu-
facturing and delivery of cell-based therapy such as stem cell mo-
bilization from the bone marrow, gene editing of stem cells and 
bone marrow ablation prior to modified stem cell reintroduction 
and engraftment, to gain insight into the factors that could influ-
ence the variability of clinical response observed in the phase I/
II trial of SAR445136 (PRECIZN-1; NCT03653247).36 The 
SCD QSP model included a realistic representation of erythro-
poiesis that describes hematopoietic stem and progenitor cells and 
erythroid progenitors in the bone marrow and the resulting cell 
progeny in the periphery in SCD patients. The SCD erythropoi-
esis model was adapted to describe the MoA of SAR445136 by 
representing the key steps of prior to dosing, such as bone marrow 
ablation followed by the introduction of modified CD34+ cells 
with enhanced HbF expression, and hematopoietic reconstitution 
that will eventually give rise to RBC with enhanced HbF expres-
sion in the patient. The QSP model was applied to explore the ob-
served inter-patient response variability to SAR445136 treatment 
by assessing the effects of treatment parameters such as degree of 
stem cell mobilization, cellular dose, and engraftment variability. 
A systematic evaluation of how these treatment parameters could 
impact long-term HbF expression could provide a blueprint for 
improved efficacy, by suggesting minimum product characteristic 
thresholds for improved efficacy. The structure of the QSP model 
also enabled its use for comparative analysis of efficacy of other 
cell-based gene therapies for SCD using different modalities, in-
cluding CTX001 (marketed as Casgevy®) which uses CRISPR 
and the lentiviral vector gene therapy lovotibeglogene autotemcel 
(marketed as Lyfgenia®). The model’s ability to recapitulate these 
related therapies data provided further qualifying support for its 
application.

Application QSP-based digital twin analysis
One of the benefits of applying QSP approaches to clinical data 
is that it enables the generation of digital twins.52,53 In the indus-
trial sector a digital twin is used as an in silico replica of a physical 
object in order to optimize it through computer simulations (the 
authors consider the terms “digital twins” and “virtual twins” in-
terchangeable when applied to QSP modeling, even though they 
are considered distinct concepts in other sectors such as industrial 
manufacturing). Similarly, QSP-derived digital twins are calibra-
tions of the QSP model to each patient’s set of data, using a small 
subset of the model parameters, to describe the patient’s own PK, 
biomarker and clinical end-point profile along with their demo-
graphics (age, body weight, sex, etc.) (Figure 2). This results in 
each patient being represented using the same QSP model struc-
ture employing a subset of parameters that are personalized or pa-
tient specific. Digital twin generation allows for the accounting 
of the observed intrinsic variability in the disease presentation of 
each patient. Digital twins have enormous potential in drug devel-
opment, especially when it comes to personalized medicine: they 
can be used to simulate individual therapies in advance and visu-
alize potential efficacy and disease progression. By incorporating 
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patient-specific data into these models, it may be possible to pre-
dict individual responses to drugs, thereby enabling the develop-
ment of treatments that are tailored to the disease presentation of 
each patient.

Case Study 9: Digital twin-based analysis to account for 
disease heterogeneity in clinical trial baselines. Pompe disease 
(ORPHA:365) is a rare, progressive neuromuscular disease caused 
by deficient lysosomal glycogen degradation through the enzyme 
acid alpha-glucosidase (GAA). In the more severe infantile-
onset (IOPD, ORPHA:308552) phenotype, patients experience 
symptom onset within the first months, or even days, of life. 
IOPD is characterized by cardiomyopathy in addition to skeletal 
and other multi-systemic manifestations. If untreated, IOPD is 
usually fatal in infancy.

Similar to other lysosomal storage diseases, both IOPD and 
late-onset Pompe disease (LOPD, ORPHA:420429) are treated 
through ERT, where the deficient endogenous enzyme is supple-
mented with recombinant human GAA (rhGAA) to break down 
accumulated tissue glycogen. Alglucosidase alfa (commercialized 
as Myozyme or Lumizyme) is the first ERT developed for Pompe 
disease. Avalglucosidase alfa (commercialized as Nexviazyme or 
Nexviadyme) is the next generation rhGAA, glycoengineered to 
have improved targeted cellular uptake.

Due to small patient numbers in IOPD and the high phenotypic 
heterogeneity observed in this population, the comparison of clin-
ically observed treatment response is complex. To address this chal-
lenge, a QSP-based digital twin approach was applied to perform 
an in silico comparison of the efficacy of avalglucosidase alfa and 
alglucosidase alfa in IOPD patients.54 A QSP model was devel-
oped that represents key elements of Pompe disease pathophysiol-
ogy across the phenotypic spectrum of both LOPD and IOPD and 

captures the biomarker profile and response to ERT in both popu-
lations. The QSP model was then applied to generate digital twins 
of each IOPD patient enrolled in the avalglucosidase alfa clinical 
development program, considering their individual disease burden, 
demographics (age, sex, body weight), and prior treatment history.

This digital twin cohort supplemented clinical observations by 
comparing the simulated tissue glycogen clearance and resulting 
biomarker response following alternative ERT regimens for each 
individual digital twin. Since all digital twins were simulated with 
all treatments, this addressed the confounding effects of baseline 
disease heterogeneity and treatment history that complicate in-
terpretation of clinical observations. This analysis illustrates the 
power of the QSP-based digital twin approach to supplement clin-
ical datasets in rare and highly heterogeneous indications, support-
ing the interpretation of efficacy results.

Case Study 10: Digital twin-based quantification of similarity 
of disease and treatment response between pediatric and 
adult patients. QSP models hold great promise to support 
the extrapolation of efficacy to different patient populations, 
especially in rare diseases.55–57 The basis of the use of a QSP 
model for pediatric extrapolation is that if a QSP model 
intended to describe adult clinical data can describe with similar 
accuracy pediatric clinical data, then it can be inferred that the 
representation of disease and drug response is similar in both 
populations. This is achieved by calibrating the QSP model to 
the biomarker and clinical end-points profiles of individual adult 
patients (adult digital twins) to establish the expected degree 
of variability needed in each of these key pathophysiological 
processes and their associated parameters to accurately capture 
the observed adult data. The variation observed for the same 
processes and parameters in pediatric patients can then be 

Figure 2  QSP-based digital twins are a model representation of the actual patient’s biomarker and clinical end-point profile, considering 
the patient’s disease presentation, relevant medical history, drug dosing regimen, and demographics. Digital twins can simulate disease 
progression or treatment response.
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evaluated against this benchmark, by calibrating the model 
against the pediatric dataset (pediatric digital twins) and 
comparing the resulting adult vs. pediatric digital twins. This 
type of assessment can be used to mechanistically compare 
the exposure and response relationships in these populations 
to quantify the degree of similarity and support pediatric 
extrapolation. The following section describes a case study 
where a QSP-based assessment of similarity of disease and 
treatment response provided a valuable tool in pediatric drug 
development in a rare disease.

Acid sphingomyelinase deficiency (ASMD, historically known 
as Niemann-Pick disease, types A, B, and A/B; ORPHA:618899), 
is a rare, serious, life-threatening lysosomal storage disease due to 
insufficient activity of the lysosomal hydrolase acid sphingomyeli-
nase (ASM). ASMD is caused by recessively inherited mutations in 
the sphingomyelin phosphodiesterase 1 (SMPD1) gene, encoding 
the enzyme ASM, which catabolizes sphingomyelin into ceramide. 
Deficiency of ASM results in the toxic accumulation of sphingo-
myelin in macrophages residing in various organs and in hepato-
cytes, resulting in tissue damage and organ dysfunction in patients 
with ASMD, such as lung function decline and splenomegaly.58 
The clinical development of olipudase alfa (commercialized as 
Xenpozyme) the first treatment for ASMD, included (i) a multi-
center, randomized, double-blinded, placebo-controlled, repeat-
dose phase II/III trial (DFI12712) in adult patients with ASMD; 
and (ii) a single arm open-label study (DFI13803) in pediatric 
patients. The two primary efficacy end points were % predicted 
diffusion capacity for carbon monoxide (% predicted DLco) and 
spleen volume in combination with the splenomegaly related score. 
The adequate and well-controlled pivotal study (DFI12712) in 
adults with ASMD showed a clinically meaningful and nominally 
statistically significant improvement in lung function and spleen 
size reduction for patients randomized to olipudase alfa compared 
to those treated with placebo at week 52. In pediatric patients with 
ASMD from a single arm open-label study, treatment with olipu-
dase alfa resulted in similar improvements in lung function and 
spleen volume at week 52 as compared to baseline. The effective-
ness of olipudase alfa in pediatric patients was based on this dataset 
and complemented with the framework of partial extrapolation. 
A QSP model was applied to assess the degree of mechanistic sim-
ilarity of disease and response to treatment with olipudase alfa in 
pediatric and adult ASMD patients.59 The QSP model described 
key visceral pathophysiology and the MoA of olipudase alfa with 
four sub-models that cover multiple biological scales of ASMD 
and olipudase alfa action. These include a pharmacokinetic (PK) 
sub-model, a molecular-level sub-model to describe two biomark-
ers (plasma ceramide and plasma lyso-sphingomyelin), a cellular-
level sub-model, and an organ-level sub-model to describe two 
clinical end points (spleen volume and % predicted DLco) used 
for the clinical assessment of ASMD disease severity and response 
to olipudase alfa.

The analysis involved generating digital twins for each adult and 
pediatric ASMD patients enrolled in the olipudase alfa clinical 
program.59 These digital twins were used to evaluate the similarity 
of baseline and treatment response of biomarkers and clinical end 
points between adult and pediatric patients by quantifying how 

comparable was the model description of the pediatric vs. adult 
datasets. This was achieved by comparing pediatric vs. adult digital 
twins against observed data, to evaluate whether digital twins cap-
ture their corresponding pediatric or adult patient’s PK, PD, and 
clinical end points with comparable accuracy, regardless of age. 
The parameter value distributions and parameter sensitivities from 
adult digital twins and pediatric digital twins were also compared.

QSP-based digital twins captured each patient’s observed bio-
marker and end-point profile, their demographic data, and the 
intrinsic variability in disease severity, all connected to a unified 
representation of ASMD. While sharing the same model struc-
ture, adult and pediatric digital twins showed comparable param-
eter value distributions, independent of age, for parameters that 
control key disease processes in ASMD phenotype. Consistent 
parameter sensitivities were also identified in both pediatric and 
adult digital twins. The QSP analysis results provided mechanistic 
insight into ASMD and suggested that there are no distinct patient 
sub-populations defined by age, but a continuum of disease pre-
sentations due to variability in disease severity. Applying the QSP 
model of ASMD in the olipudase alfa pediatric investigation plan 
informed drug development decision making, supported disease 
and treatment response similarity assessment, and extrapolation 
assumptions as well as facilitated the regulatory assessments and 
pediatric approval.

CONCLUSION
QSP-based analyses can provide insights into disease processes 
and drug action as exemplified by the case studies presented. The 
list of case studies presented here is by no means exhaustive, none-
theless it provides a glimpse to the potential impact that QSP 
analyses can have on drug development programs in rare indica-
tions. In early drug development, QSP models can facilitate the 
clinical translation of preclinical efficacy by providing biological 
mechanism-grounded bridging between preclinical experimental 
measurements and clinical metrics of pathophysiology to predict 
efficacy in the target patient population. QSP-based analysis can 
also support late phase clinical trials by generating digital twins 
to gain mechanistic insight into the disease presentation and 
treatment response observed. Overall, QSP models can function 
as repositories of the amalgamation of datasets related to the rare 
disease of interest. In some cases, they can complement the limited 
clinical trial data available and provide the means to evaluate the 
totality of knowledge on the disease and drug response.

Nevertheless, the successful application of QSP is not with-
out hurdles. Beyond the technical challenges inherent to QSP 
approaches due to their complexity and uncertainties, these 
models necessitate a comprehensive understanding of the dis-
ease’s etiology to deliver a meaningful analysis.21,60 This involves 
linking the known pathophysiology and a description of the 
drug’s MoA to observed biomarkers or clinical end points in a 
biologically meaningful manner. Monogenic diseases account 
for at least 80% of all rare diseases,61 making them amenable in-
dications to describe with a QSP framework given their more 
evident causality. Striking the right balance of how much mech-
anistic detail to include in a QSP model is key, with a fit-for-
purpose and parsimonious model usually the goal. This requires 
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an evaluation of the features of disease pathophysiology neces-
sary for the desired model application while maintaining a fo-
cused scope. Ambiguity or large gaps in knowledge that prevent 
a mechanistic description of the disease or observed response can 
limit the value of QSP-based approaches and may benefit from a 
more empirical modeling approach. This is particularly relevant 
for multifactorial diseases, where the interplay of multiple genes 
and environmental factors can influence disease phenotype and 
progression, which may be challenging to fully account for in a 
mechanistic model.

The growing number of QSP models applied throughout the 
drug development process62 calls for the creation of assessment 
criteria and quantifiable metrics of QSP model quality. Given the 
complexity and time costs of model development, establishing rig-
orous quality metrics is pivotal for advancement of the QSP ap-
proach. These metrics would be analogous to those developed in 
established modeling approaches, and would increase confidence 
in QSP model performance.63 Such standards could bolster stake-
holder and regulatory acceptance, thereby fostering the routine 
integration of these mechanistic models in drug discovery and 
development.64 While there are still many challenges to overcome, 
the potential benefits of the QSP approach are vast and could sig-
nificantly accelerate drug development, delivering life-saving drugs 
for patients in rare diseases.
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